A Novel Electrical Equipment Status Diagnosis Method Based on Super-Resolution Reconstruction and Logical Reasoning

Author:

Ping Peng12,Yao Qida2,Guo Wei3,Liao Changrong1

Affiliation:

1. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China

2. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

3. Zhejiang Sanchen Electrical Company Limited, Lishui 323900, China

Abstract

The accurate detection of electrical equipment states and faults is crucial for the reliable operation of such equipment and for maintaining the health of the overall power system. The state of power equipment can be effectively monitored through deep learning-based visual inspection methods, which provide essential information for diagnosing and predicting equipment failures. However, there are significant challenges: on the one hand, electrical equipment typically operates in complex environments, thus resulting in captured images that contain environmental noise, which significantly reduces the accuracy of state recognition based on visual perception. This, in turn, affects the comprehensiveness of the power system’s situational awareness. On the other hand, visual perception is limited to obtaining the appearance characteristics of the equipment. The lack of logical reasoning makes it difficult for purely visual analysis to conduct a deeper analysis and diagnosis of the complex equipment state. Therefore, to address these two issues, we first designed an image super-resolution reconstruction method based on the Generative Adversarial Network (GAN) to filter environmental noise. Then, the pixel information is analyzed using a deep learning-based method to obtain the spatial feature of the equipment. Finally, by constructing the logic diagram for electrical equipment clusters, we propose an interpretable fault diagnosis method that integrates the spatial features and temporal states of the electrical equipment. To verify the effectiveness of the proposed algorithm, extensive experiments are conducted on six datasets. The results demonstrate that the proposed method can achieve high accuracy in diagnosing electrical equipment faults.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Higher Education Institutions of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3