Ignition Delay and Burning Rate Analysis of Diesel–Carbon Nanotube Blends Stabilized by a Surfactant: A Droplet-Scale Study

Author:

Gallego Anderson12ORCID,Cacua Karen1,Gamboa David1ORCID,Rentería Jorge1ORCID,Herrera Bernardo1

Affiliation:

1. Advanced Materials and Energy Group (MATyER), Instituto Tecnológico Metropolitano, Street 54A No 30-01, Medellín 050536, Colombia

2. Group of Research and Innovation in Energy (GIIEN), Institución Universitaria Pascual Bravo, Street 73 No 73a-226, Medellín 050034, Colombia

Abstract

In this study, the effects of pristine carbon nanotubes (CNTs), sodium dodecylbenzene sulfonate (SDBS), and diesel blends on the ignition delay and burning rate are examined experimentally. For this purpose, single-droplet combustion tests were conducted in a combustion system for 21 days using CNTs at concentrations of 50 ppm and 100 ppm, which were dispersed in Colombian commercial diesel and stabilized by SDBS. Videos of the diesel droplet burning were obtained using a high-speed camera, and the Shadowgraph optical technique was used to observe the development of the droplet size during combustion. Thus, records of the process were collected, and the treatment was carried out using a MATLAB algorithm. The measurements and processing were carried out along with a stability study, which included measurements of dynamic light scattering (DLS), pH, potential Zeta, and properties such as thermal conductivity and surface tension. The results demonstrated that the temporal stability has a direct impact on the single-droplet combustion tests because a concentration of CNTs of 100 ppm showed a higher stability than those achieved by 50 ppm. Consequently, improvements were found with a concentration of 100 ppm—for instance, the thermal conductivity increased by about 20%, the ignition delay time increased by 16.2%, and the burning rate increased by 30.5%.

Funder

Ministerio de Ciencia, Tecnología e Innovación de Colombia—Minciencias

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3