Experimental Study of a Passive Thermal Management System Using Expanded Graphite/Polyethylene Glycol Composite for Lithium-Ion Batteries

Author:

Xia Zhenggang1,Li Chaoen2ORCID,Yu Hang1,Wang Zhirong3

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China

2. School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315016, China

3. School of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China

Abstract

Modern energy batteries are mainly used in pure electric vehicles. The stability of battery operation relies heavily on thermal management systems for which phase-change batteries have become an effective solution. In this study, we designed a battery thermal management system divided into two parts: a shaped phase-change material (PCM) module and a battery module. In the qualitative PCM module, polyethylene glycol was used to absorb heat, expanded graphite (EG) was used as the thermally conductive agent, and copper foam formed the support skeleton. The battery module comprised an 18650 lithium-ion battery with an enthalpy of 155 J/g. In our experiments, we applied PCMs to the battery modules and demonstrated the effectiveness of composite PCM (CPCM) in effectively lowering the temperature of both battery packs and minimizing the temperature discrepancies among individual batteries. At a gradually increasing discharge rate (1C/2C/3C), the battery’s Tmax could be lowered and the temperature could be de creased at various positions. It was evident that the battery temperature could be effectively preserved using CPCM. The findings of this study lay a foundation for future research on battery thermal management. Finally, the copper foam and EG contributed significantly to the prevention of leakage.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3