Effective Sample Size with the Bivariate Gaussian Common Component Model

Author:

Canton Letícia Ellen Dal1ORCID,Guedes Luciana Pagliosa Carvalho1ORCID,Uribe-Opazo Miguel Angel1ORCID,Maltauro Tamara Cantu1ORCID

Affiliation:

1. Engineering, Mathematics and Technology Department, Western Paraná State University (Universidade do Oeste do Paraná, UNIOESTE), Cascavel 85819-110, Brazil

Abstract

Effective sample size (ESS) consists of an equivalent number of sampling units of a georeferenced variable that would produce the same sampling error, as it considers the information that each georeferenced sampling unit contains about itself as well as in relation to its neighboring sampling units. This measure can provide useful information in the planning of future georeferenced sampling for spatial variability experiments. The objective of this article was to develop a bivariate methodology for ESS (ESSbi), considering the bivariate Gaussian common component model (BGCCM), which accounts both for the spatial correlation between the two variables and for the individual spatial association. All properties affecting the univariate methodology were verified for ESSbi using simulation studies or algebraic methods, including scenarios to verify the impact of the BGCCM common range parameter on the estimated ESSbi values. ESSbi was applied to real organic matter (OM) and sum of bases (SB) data from an agricultural area. The study found that 60% of the sample observations of the OM–SB pair contained spatially redundant information. The reduced sample configuration proved efficient by preserving spatial variability when comparing the original and reduced OM maps, using SB as a covariate. The Tau concordance index confirmed moderate accuracy between the maps.

Funder

Coordination for the Improvement of Higher Education Personnel

Publisher

MDPI AG

Subject

Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3