Study on the Equivalence Transformation between Blasting Vibration Velocity and Acceleration

Author:

Yu Chong12,Wu Jiajun12,Li Haibo12,Ma Yongan12,Wang Changjian12

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The evaluation of blasting vibrations primarily hinges on two physical quantities: velocity and acceleration. A significant challenge arises when attempting to reference the two types of vibration data in relation to one another, such as different types of seismometers, noise, etc., necessitating a method for their equivalent transformation. To address this, a transformation method is discussed in detail with a case study, and equations for the ratio (Ra) of the particle peak velocity (PPV) to the particle peak acceleration (PPA) are proposed. The findings are twofold: (1) The conventional data conversion processes often suffer from low accuracy due to the presence of trend terms and noise in the signal. To mitigate this, the built-in MATLAB function is used for trend term elimination, complemented by a combined approach that integrates CEEMDAN with WD/WDP for noise reduction. These significantly enhance the accuracy of the transformation. (2) This analysis reveals a positive power function correlation between Ra and the propagation distance of the blast vibrations, contrasted by a negative correlation with the maximum charge per delay. Intriguingly, the Ra values observed in pre-splitting blasting operations are consistently lower than those in bench blasting. The established Ra equations offer a rapid, direct method for assessing the transformation between the PPV and PPA, providing valuable insights for the optimization of blasting design.

Funder

Wuhan Science and Technology Bureau of China

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Reference27 articles.

1. Duvall, W.I., and Fogelson, D.E. (1962). Review of Criteria for Estimating Damage to Residences from Blasting Vibrations, Bureau of Mines. Report for U.S. Bureau of Mines (USBM) No. BM-RI-5968.

2. (1973). Criteria for Safety and Design of Structures Subject to Underground Blast (Standard No. IS 6922:1973).

3. An introduction to Chinese safety regulations for blasting vibration. Environ;Lu;Earth Sci.,2012

4. Zou, D. (2017). Theory and Technology of Rock Excavation for Civil Engineering, Metallurgical Industry Press.

5. Seismic performance evaluation of unreinforced masonry school buildings in Turkey;Yilmaz;J. Vib. Control,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3