Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation

Author:

Roshanfar Majid1ORCID,Dargahi Javad1ORCID,Hooshiar Amir2ORCID

Affiliation:

1. Surgical Robotics Laboratory (SRL), Department of Mechanical Engineering, Gina Cody School of Engineering, Concordia University, Montreal, QC H3G 1M8, Canada

2. Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada

Abstract

Soft robotics has emerged as a promising field due to the unique characteristics offered by compliant and flexible structures. Overcoming the challenge of precise position control is crucial in the development of such systems that require accurate modeling of soft robots. In response, a hybrid-actuated soft robot employing both air pressure and tendons was proposed, modeled, and validated using the dynamic Cosserat rod theory. This approach comprehensively addresses various aspects of deformation, including bending, torsion, shear, and extension. The designed robot was intended for robot-assisted cardiac ablation, a minimally invasive procedure that is used to treat cardiac arrhythmias. Within the framework of the Cosserat model, dynamic equations were discretized over time, and ordinary differential equations (ODEs) were solved at each time step. These equations of motion facilitated the prediction of the robot’s response to different control inputs, such as the air pressure and tension applied to the tendons. Experimental studies were conducted on a physical prototype to examine the accuracy of the model. The experiments covered a tension range of 0 to 3 N for each tendon and an air pressure range of 0 to 40 kPa for the central chamber. The results confirmed the accuracy of the model, demonstrating that the dynamic equations successfully predicted the robot’s motion in response to diverse control inputs.

Funder

Natural Science and Engineering Research Council (NSERC) of Canada

Fonds de Recherche du Québec pour la Nature et les Technologies (FRQNT), Concordia University, and McGill University, Montreal, QC, Canada

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference36 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3