Neuronal-Immune Cell Units in Allergic Inflammation in the Nose

Author:

Klimov Vladimir,Cherevko Natalia,Klimov Andrew,Novikov Pavel

Abstract

Immune cells and immune-derived molecules, endocrine glands and hormones, the nervous system and neuro molecules form the combined tridirectional neuroimmune network, which plays a significant role in the communication pathways and regulation at the level of the whole organism and local levels, in both healthy persons and patients with allergic rhinitis based on an allergic inflammatory process. This review focuses on a new research paradigm devoted to neuronal-immune cell units, which are involved in allergic inflammation in the nose and neuroimmune control of the nasal mucociliary immunologically active epithelial barrier. The categorization, cellular sources of neurotransmitters and neuropeptides, and their prevalent profiles in constituting allergen tolerance maintenance or its breakdown are discussed. Novel data on the functional structure of the nasal epithelium based on a transcriptomic technology, single-cell RNA-sequencing results, are considered in terms of neuroimmune regulation. Notably, the research of pathogenesis and therapy for atopic allergic diseases, including recently identified local forms, from the viewpoint of the tridirectional interaction of the neuroimmune network and discrete neuronal-immune cell units is at the cutting-edge.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neuroimmune communication in allergic rhinitis;Frontiers in Neurology;2023-12-21

2. Neuroimmune pathways regulating airway inflammation;Annals of Allergy, Asthma & Immunology;2023-11

3. Bone Marrow: The Central Immune System;Immuno;2023-08-03

4. The Role of Neurons in Human Health and Disease;International Journal of Molecular Sciences;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3