Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential

Author:

Chammam Amel123ORCID,Fillaudeau Luc1ORCID,Romdhane Mehrez2,Bouajila Jalloul3ORCID

Affiliation:

1. Toulouse Biotechnology Institute, Bio & Chemical Engineering TBI (CNRS UMR5504, INRAE UMR792, INSA Toulouse), 31400 Toulouse, France

2. Energy, Water, Environment and Process Laboratory (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6029, Tunisia

3. Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France

Abstract

Various parts of the Pinaceae species, a traditional plant, have potential health benefits and exhibit antibacterial, anti-cancer, and antioxidant activities. This study aims to investigate the biochemical properties of both petal (P) and core (C) fractions from pinecones of P. halepensis (PA), P. brutia (PB), and P. pinea (PP). Pinecones were manually separated into P and C, which were then milled to investigate maceration with solvents of increasing polarity: cyclohexane (1SV), ethyl acetate (2SV), and methanol (3SV) at 20 °C. Spectrophotometry was utilized to quantify the total phenolic content (TPC) and to assess bioactivities. Gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) were employed to identify the chemical composition. 3SV extracts demonstrated the highest TPC and a significant anti–oxidant potential. PA-P-3SV exhibited the highest TPC (460.66 mg GAE/g DW) and PP-P-3SV displayed the best IC50 (10.54 µg/mL) against DPPH. 1SV and 2SV extracts showed interesting anticancer activity against Hela and HepG2 cells. No significant toxic effect of P and C extracts from pinecones was observed on HEK-293 cells. GC-MS analysis unveiled 46 volatile compounds, of which 32 were detected for the first time in these species. HPLC analysis identified 38 compounds, of which 27 were not previously detected in these species. This study highlights the significant potential of pinecones as a rich source of bioactive compounds.

Funder

Erasmus plus program

BioEco graduate school mobility

University of Gabes

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3