Affiliation:
1. Key Laboratory Silviculture and Conservation of MOE, College of Forestry, Beijing Forestry University, Beijing 100083, China
2. Forest Science Research Institute of Wufeng Tujia Autonomous County, Wufeng 443400, China
3. Magnolia wufengensis Research Center, Beijing Forestry University, Beijing 100083, China
4. National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing 100083, China
Abstract
The growth and physiological characteristics of four Magnoliaceae plants (Yulania biondii, Yulania denudata, and two varieties of Magnolia wufengensis (Jiaohong 1 and Jiaohong 2)) were investigated. Four Magnoliaceae plants were subjected to various concentrations of NaCl for 60 days: 0 mM, 60 mM, 120 mM, 180 mM, and 240 mM. The leaf water content (LWC), relative growth rate of plant height and stem diameter, photosynthetic pigments, and photosynthetic rate (Pn) decreased during the NaCl treatments, indicating slowed growth and photosynthesis. Malondialdehyde (MDA), Na+, superoxide dismutase (SOD) activity, peroxidase (POD) activity, ascorbic acid (AsA) content, and soluble sugar content all increased while K+ decreased. Ascorbate peroxidase (APX) activity, glutathione (GSH), soluble protein, and proline first increased after decreasing with increasing NaCl concentration. Principal component 1 (PC1) had larger loading values for growth and photosynthesis indices, while principal component 2 (PC2) exhibited larger loading values for antioxidant substances and osmotic adjustment substances; the correlation analysis showed that PC1 and PC2 had negative correlations. The four Magnoliaceae plants exhibited largely variable growth and physiological activities in response to NaCl. Yulania denudata exhibited greater reductions in growth and photosynthesis and greater decreases in antioxidant enzyme activities and osmotic adjustment substances, which indicated poor tolerance to salt stress. Among the four Magnoliaceae plants, Jiaohong 1 exhibited the greatest salt tolerance, followed by Jiaohong 2, Yulania biondii, and Yulania denudata.
Funder
Special Fund for Forest Scientific Research in the Public Welfare
Key R&D Projects of National Forestry and Grassland Administration