Possible Mechanism of Sucrose and Trehalose-6-Phosphate in Regulating the Secondary Flower on the Strong Upright Spring Shoots of Blueberry Planted in Greenhouse

Author:

Wu Hui-Ling1,Zhang Sui-Lin1,Feng Xin1,Zhang Ya-Qian1,Zhou Bing-Jie1,Cao Man1,Wang Ya-Ping1,Guo Bao-Shi1,Hou Zhi-Xia1

Affiliation:

1. State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China

Abstract

Secondary flowering is the phenomenon in which a tree blooms twice or more times a year. Along with the development of blueberry (Vaccinium corymbosum L.) fruits in spring, a large number of secondary flowers on the strong upright spring shoots were noticed in blueberries planted in the greenhouse. To reveal the cause and possible regulatory mechanism of the phenomenon, we clarified the phenological characteristics of flower bud differentiation and development on the spring shoots by combining phenological phenotype with anatomical observation. Furthermore, the changes in carbohydrates, trehalose-6-phosphate (Tre6P), and the relationship among the key enzyme regulatory genes for Tre6P metabolism and the key regulatory genes for flower formation during the differentiation process of apical buds and axillary buds were investigated. The results showed that the process of flower bud differentiation and flowering of apical and axillary buds was consistent, accompanied by a large amount of carbohydrate consumption. This process was positively correlated with the expression trends of VcTPS1/2, VcSnRK1, VcFT, VcLFY2, VcSPL43, VcAP1, and VcDAM in general, and negatively correlated with that of VcTPP. In addition, there is a certain difference in the differentiation progress of flower buds between the apical and axillary buds. Compared with axillary buds, apical buds had higher contents of sucrose, fructose, glucose, Tre6P, and higher expression levels of VcTPS2, VcFT, VcSPL43, and VcAP1. Moreover, VcTPS1 and VcTPS2 were more closely related to the physiological substances (sucrose and Tre6P) in axillary bud and apical bud differentiation, respectively. It was suggested that sucrose and trehalose-6-phosphate play a crucial role in promoting flower bud differentiation in strong upright spring shoots, and VcTPS1 and VcTPS2 might play a central role in these activities. Our study provided substantial sight for further study on the mechanism of multiple flowering of blueberries and laid a foundation for the regulation and utilization of the phenomenon of multiple flowering in a growing season of perennial woody plants.

Funder

Beijing Forestry University hot spot tracking project

basic scientific research business fees of central universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3