The RING-Type E3 Ubiquitin Ligase Gene GhDIRP1 Negatively Regulates Verticillium dahliae Resistance in Cotton (Gossypium hirsutum)

Author:

Miao Fenglin1,Chen Wei1,Zhao Yunlei12,Zhao Pei1,Sang Xiaohui1,Lu Jianhua1,Wang Hongmei12

Affiliation:

1. State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China

2. Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China

Abstract

Cotton is one of the world’s most important economic crops. Verticillium wilt is a devastating cotton disease caused by Verticillium dahliae, significantly impacting cotton yield and quality. E3 ubiquitin ligases are essential components of the ubiquitin-mediated 26S proteasome system, responsible for recognizing ubiquitinated target proteins and promoting their degradation, which play a crucial regulatory role in plant immune responses. In this study, on the basis of the confirmation of differential expression of GhDIRP1, a RING-type E3 ubiquitin ligase encoding gene, in two cotton varieties resistant (Zhongzhimian 2) or susceptible (Jimian 11) to V. dahliae, we demonstrated that GhDIRP1 is a negative regulator of V. dahliae resistance because silencing GhDIRP1 in cotton and heterogeneously overexpressing the gene in Arabidopsis enhanced and compromised resistance to V. dahliae, respectively. The GhDIRP1-mediated immune response seemed to be realized through multiple physiological pathways, including hormone signaling, reactive oxygen species, and lignin biosynthesis. Based on the sequences of GhDIRP1 isolated from Zhongzhimian 2 and Jimian 11, we found that GhDIRP1 had identical coding but different promoter sequences in the two varieties, with the promoter of Zhongzhimian 2 being more active than that of Jimian 11 because the former drove a stronger expression of GUS and LUC reporter genes. The results link the ubiquitination pathway to multiple physiological pathways acting in the cotton immune response and provide a candidate gene for breeding cotton varieties resistant to V. dahliae.

Funder

Biological Breeding Major Projects in National Science and Technology

National Natural Science Foundation

Natural Science Foundation of Henan Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3