G1 Interacts with OsMADS1 to Regulate the Development of the Sterile Lemma in Rice

Author:

Fang Huimin1ORCID,Chen Hualan23,Wang Jianing1,Li Ning23,Zhang Long23ORCID,Wei Cunxu23ORCID

Affiliation:

1. Guangling College, Yangzhou University, Yangzhou 225000, China

2. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China

3. Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China

Abstract

Flower development, as the basis for plant seed development, is principally conserved in angiosperms. At present, a number of genes regulating flower organ differentiation have been identified, and an ABCDE model has also been proposed. In contrast, the mechanism that regulates the development of the sterile lemma remains unclear. In this study, we identified and characterized a rice floral organ mutant, M15, in which the sterile lemma transformed into a lemma-like organ. Positional cloning combined with a complementary experiment demonstrated that the mutant phenotype was restored by LONG STERILE LEMMA1/(G1). G1 was expressed constitutively in various tissues, with the highest expression levels detected in the sterile lemma and young panicle. G1 is a nucleus-localized protein and functions as a homomer. Biochemical assays showed that G1 physically interacted with OsMADS1 both in vitro and in vivo. Interestingly, the expression of G1 in M15 decreased, while the expression level of OsMADS1 increased compared with the wild type. We demonstrate that G1 plays a key role in sterile lemma development through cooperating with OsMADS1. The above results have implications for further research on the molecular mechanisms underlying flower development and may have potential applications in crop improvement strategies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Innovation Program for Graduates of Jiangsu Province

Qinglan Project of Jiangsu

Qinglan Project of Yangzhou University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3