Gibberellin Positively Regulates Tomato Resistance to Tomato Yellow Leaf Curl Virus (TYLCV)

Author:

Zhang Chenwei123ORCID,Wang Dandan1,Li Yan1,Wang Zifan1,Wu Zhiming4,Zhang Qingyin1,Jia Hongwei15,Dong Xiaoxu5,Qi Lianfen1,Shi Jianhua1,Shang Zhonglin2ORCID

Affiliation:

1. Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China

2. Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China

3. Modern Agricultural Science and Technology Laboratory, Shijiazhuang University, Shijiazhuang 050035, China

4. Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031, China

5. College of Agricultural and Forestry Technology, Hebei North University, Zhangjiakou 075000, China

Abstract

Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that are resistant to the virus. In our preliminary investigations, we observed that the use of growth retardants increased the rate of TYLCV infection and intensified the damage to the tomato plants, suggesting a potential involvement of gibberellic acid (GA) in the conferring of resistance to TYLCV. In this study, we employed an infectious clone of TYLCV to inoculate tomato plants, which resulted in leaf curling and growth inhibition. Remarkably, this inoculation also led to the accumulation of GA3 and several other phytohormones. Subsequent treatment with GA3 effectively alleviated the TYLCV-induced leaf curling and growth inhibition, reduced TYLCV abundance in the leaves, enhanced the activity of antioxidant enzymes, and lowered the reactive oxygen species (ROS) levels in the leaves. Conversely, the treatment with PP333 exacerbated TYLCV-induced leaf curling and growth suppression, increased TYLCV abundance, decreased antioxidant enzyme activity, and elevated ROS levels in the leaves. The analysis of the gene expression profiles revealed that GA3 up-regulated the genes associated with disease resistance, such as WRKYs, NACs, MYBs, Cyt P450s, and ERFs, while it down-regulated the DELLA protein, a key agent in GA signaling. In contrast, PP333 induced gene expression changes that were the opposite of those caused by the GA3 treatment. These findings suggest that GA plays an essential role in the tomato’s defense response against TYLCV and acts as a positive regulator of ROS scavenging and the expression of resistance-related genes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

High-level Talent Funding Project of Hebei Province

Shijiazhuang Agricultural Science and Technology Project

Postdoctoral research fund of Shijiazhuang Academy of Agriculture and Forestry Sciences

Modern Agricultural Science and Technology Innovation Project of Shijiazhuang Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3