Comprehensive Analysis of Autophagy-Related Genes in Rice Immunity against Magnaporthe oryzae

Author:

Xie Xuze1,Pei Mengtian1,Liu Shan1,Wang Xinxiao1,Gong Shanshan1,Chen Jing1,Zhang Ye12,Wang Zonghua134ORCID,Lu Guodong1ORCID,Li Ya15

Affiliation:

1. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Fujian Provincial Quality Safety Inspection and Test Center for Agricultural Products, Fuzhou 350003, China

3. Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China

4. Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou 350108, China

5. Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350013, China

Abstract

Rice blast disease, caused by the fungus Magnaporthe oryzae, is a significant threat to rice production. Resistant cultivars can effectively resist the invasion of M. oryzae. Thus, the identification of disease-resistant genes is of utmost importance for improving rice production. Autophagy, a cellular process that recycles damaged components, plays a vital role in plant growth, development, senescence, stress response, and immunity. To understand the involvement of autophagy-related genes (ATGs) in rice immune response against M. oryzae, we conducted a comprehensive analysis of 37 OsATGs, including bioinformatic analysis, transcriptome analysis, disease resistance analysis, and protein interaction analysis. Bioinformatic analysis revealed that the promoter regions of 33 OsATGs contained cis-acting elements responsive to salicylic acid (SA) or jasmonic acid (JA), two key hormones involved in plant defense responses. Transcriptome data showed that 21 OsATGs were upregulated during M. oryzae infection. Loss-of-function experiments demonstrated that OsATG6c, OsATG8a, OsATG9b, and OsATG13a contribute to rice blast resistance. Additionally, through protein interaction analysis, we identified five proteins that may interact with OsATG13a and potentially contribute to plant immunity. Our study highlights the important role of autophagy in rice immunity and suggests that OsATGs may enhance resistance to rice blast fungus through the involvement of SA, JA, or immune-related proteins. These findings provide valuable insights for future efforts in improving rice production through the identification and utilization of autophagy-related genes.

Funder

Fujian Provincial Science and Technology Key Project

Fujian Natural Science Foundation project

Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests

The National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3