Distribution Pattern of Suitable Areas and Corridor Identification of Endangered Ephedra Species in China

Author:

Zhang Huayong12,Li Jiangpeng1,Zou Hengchao1ORCID,Wang Zhongyu1ORCID,Zhu Xinyu3,Zhang Yihe4,Liu Zhao2

Affiliation:

1. Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China

2. Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao 250100, China

3. Dalian Eco-Environmental Affairs Service Center, No. 58 Lianshan Street, Shahekou District, Dalian 116026, China

4. School of Engineering, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia

Abstract

The suitable habitat of endangered Ephedra species has been severely threatened and affected by climate change and anthropogenic activities; however, their migration trends and restoration strategies are still relatively understudied. In this study, we utilized the MaxEnt model to simulate the suitable habitats of five endangered Ephedra species in China under current and future climate scenarios. Additionally, we identified significant ecological corridors by incorporating the minimum cumulative resistance (MCR) model. Under the current climate scenario, the suitable area of Ephedra equisetina Bunge, Ephedra intermedia Schrenk ex Mey, Ephedra sinica Stapf, and Ephedra monosperma Gmel ex Mey comprised 16% of the area in China, while Ephedra rhytidosperma Pachom comprised only 0.05%. The distribution patterns of these five Ephedra species were primarily influenced by altitude, salinity, temperature, and precipitation. Under future climate scenarios, the suitable areas of E. equisetina, E. intermedia, and E. sinica are projected to expand, while that of E. monosperma is expected to contract. Notably, E. rhytidosperma will lose its suitable area in the future. Our identified ecological corridors showed that the first-level corridors encompassed a wider geographical expanse, incorporating E. equisetina, E. intermedia, E. sinica, and E. monosperma, while that of E. rhytidosperma exhibited a shorter length and covered fewer geographical areas. Overall, our study provides novel insights into identifying priority protected areas and protection strategies targeting endangered Ephedra species.

Funder

National Water Pollution Control and Treatment Science and Technology Major Project

Discipline Construction Program of Huayong Zhang, Distinguished Professor of Shandong University, School of Life Sciences

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3