Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis

Author:

Kim Yeon-Ok1,Safdar Mahpara123,Kang Hunseung4ORCID,Kim Jangho123

Affiliation:

1. Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea

2. Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea

3. Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea

4. Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea

Abstract

Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of AtGRP7 in plants under heavy metal stress remain unclear. In the present study, in Arabidopsis, the transcript level of AtGRP7 was markedly increased by Ni but was decreased by Pb. AtGRP7-overexpressing plants improved Ni tolerance, whereas the knockout mutant (grp7) was more susceptible than the wild type to Ni. In addition, grp7 showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in grp7, whereas Pb accumulation in grp7 was lower than that in overexpression lines. Ni induced glutathione synthase genes GS1 and GS2 in overexpression lines, whereas Pb increased metallothionein genes MT4a and MT4b and phytochelatin synthase genes PCS1 and PCS2 in grp7. Furthermore, Ni increased CuSOD1 and GR1 in grp7, whereas Pb significantly induced FeSOD1 and FeSOD2 in overexpression lines. The mRNA stability of GS2 and PCS1 was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that AtGRP7 plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3