Ectopic Expression of AetPGL from Aegilops tauschii Enhances Cadmium Tolerance and Accumulation Capacity in Arabidopsis thaliana

Author:

Yu Junxing1,Hu Xiaopan1,Zhou Lizhou1,Ye Lvlan1,Zeng Tuo1ORCID,Du Xuye1ORCID,Gu Lei1,Zhu Bin1,Zhang Yingying2,Wang Hongcheng1ORCID

Affiliation:

1. School of Life Sciences, Guizhou Normal University, Guiyang 550025, China

2. Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China

Abstract

Cadmium (Cd) is a toxic heavy metal that accumulates in plants, negatively affecting their physiological processes, growth, and development, and poses a threat to human health through the food chain. 6-phosphogluconolactonase (PGL) is a key enzyme in the Oxidative Pentose Phosphate Pathway(OPPP) in plant cells, essential for cellular metabolism. The OPPP pathway provides energy and raw materials for organisms and is involved in antioxidant reactions, lipid metabolism, and DNA synthesis. This study describes the Cd responsive gene AetPGL from Aegilops tauschii. Overexpression of AetPGL under Cd stress increased main root length and germination rate in Arabidopsis. Transgenic lines showed higher antioxidant enzyme activities and lower malondialdehyde (MDA) content compared to the wild type. The transgenic Arabidopsis accumulated more Cd in the aboveground part but not in the underground part. Expression levels of AtHMA3, AtNRAMP5, and AtZIP1 in the roots of transgenic plants increased under Cd stress, suggesting AetPGL may enhance Cd transport from root to shoot. Transcriptome analysis revealed enrichment of differentially expressed genes (DEGs) in the plant hormone signal transduction pathway in AetPGL-overexpressing plants. Brassinosteroids (BR), Gibbenellin acid (GA), and Jasmonic acid (JA) contents significantly increased after Cd treatment. These results indicate that AetPGL may enhance Arabidopsis’ tolerance to Cd by modulating plant hormone content. In conclusion, AetPGL plays a critical role in improving cadmium tolerance and accumulation and mitigating oxidative stress by regulating plant hormones, providing insights into the molecular mechanisms of plant Cd tolerance.

Funder

National Natural Science Foundation of China

earmarked fund for GZMARS-Rapeseed

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3