Physiological Responses of a Grapefruit Orchard to Irrigation with Desalinated Seawater

Author:

Navarro Josefa M.1ORCID,Imbernón-Mulero Alberto2ORCID,Robles Juan M.1ORCID,Hernández-Ballester Francisco M.1,Antolinos Vera1,Gallego-Elvira Belén2ORCID,Maestre-Valero José F.2ORCID

Affiliation:

1. Irrigation and Stress Physiology Group, Department of Bioeconomy, Water and Environment, Murcia Institute of Agri-Food Research and Development (IMIDA), c/Mayor s/n, 30150 Murcia, Spain

2. Agricultural Engineering Center, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain

Abstract

Desalinated seawater (DSW) has emerged as a promising solution for irrigation in regions facing water scarcity. However, adopting DSW may impact the existing cultivation model, given the presence of potentially harmful elements, among other factors. A three-year experiment was carried out to assess the short-term effects of four irrigation waters—freshwater (FW), DSW, a mix 1:1 of FW and DSW (MW), and DSW with low boron (B) concentration (DSW–B)—on a ‘Rio Red’ grapefruit orchard. These irrigation waters exhibited varying levels of phytotoxic elements, some potentially harmful to citrus trees. Sodium (Na+) and chloride (Cl−) concentrations exceeded citrus thresholds in all treatments, except in DSW−B, whilst B exceeded toxicity levels in DSW and MW treatments. Leaf concentrations of Cl− and Na+ remained low in all treatments, whereas B approached toxic levels only in DSW and MW–irrigated trees. The rapid growth of the trees, preventing excessive accumulation through a dilution effect, protected the plants from significant impacts on nutrition and physiology, such as gas exchange and chlorophyll levels, due to phytotoxic elements accumulation. Minor reductions in photosynthesis in DSW–irrigated trees were attributed to high B in leaves, since Cl− and Na+ remained below toxic levels. The accelerated tree growth effectively prevented the substantial accumulation of phytotoxic elements, thereby limiting adverse effects on tree development and yield. When the maturation of trees reaches maximal growth, the potential accumulation of phytotoxic elements is expected to increase, potentially influencing tree behavior differently. Further study until the trees reach maturity is imperative for comprehensive understanding of the long-term effects of desalinated seawater irrigation.

Funder

SEARRISOST

SEA4CROP

Ministry for Science and Innovation

State Research Agency

European Regional Development Fund

Spanish Ministry of Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3