Investigating Flow-Induced Corrosion of Magnesium in Ophthalmological Milieu

Author:

Ferroni Marco12ORCID,De Gaetano Francesco12ORCID,Gastaldi Dario1ORCID,Cereda Matteo Giuseppe3,Boschetti Federica1ORCID

Affiliation:

1. Chemistry Materials and Chemical Engineering Department “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy

2. MgShell S.r.l., 20133 Milan, Italy

3. Eye Clinic, Fatebenefratelli and Sacco Hospital, 20157 Milan, Italy

Abstract

Although the impact of local fluid dynamics in the biodegradation of magnesium is well known, currently no studies in the literature address the degradation effects of ocular vitreous on bioresorbable devices made of magnesium, which could be developed as drug delivery carriers. The aim of this study was to investigate the flow-induced corrosion mechanism of magnesium in an ophthalmological environment for future applications in ophthalmic drug delivery. To achieve this, experimental and computational methods were combined. Specifically, a CFD model was employed to design experimental conditions that replicate the ocular flow-induced shear stress (FISS) on manufactured magnesium samples. Pure Mg samples were tested in a bioreactor system capable of imposing the ocular CFD calculated values of FISS on the Mg samples’ surface by varying the pump flow rate. Optimal flow rates for a range of different FISS values specific to the ophthalmological fluid dynamics affecting the device were indeed determined before running the experiments. After conducting customized corrosion tests, morphological observations and profilometric maps of the eroded surfaces of Mg samples were obtained using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These maps were then post-processed for the parametric evaluation of corrosion rates. Pre-existing localized superficial defects did affect the final corrosion pattern. SEM images and CLSM data confirmed a uniform corrosion mechanism, with corrosion rates of 1.9, 2.7, and 3.4 μm/day under different shear stress conditions (0, 0.01, and 0.032 Pa, respectively). More generally, uniform corrosion on pure Mg samples increased with higher FISS values, and at higher shear stress values (FISS = 0.032 Pa), a notable washing-out effect of the corrosion products was observed. The removal of corrosion products at higher shear stresses suggests that the dynamic ocular environment, influenced by saccadic movements, plays a significant role in the corrosion mechanism of pure magnesium. The corrosion rates determined in this study, in conjunction with clinical drug release requirements, are crucial for designing potential drug-release devices for ocular applications.

Funder

Italian Ophthalmological Society

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3