Aerogels for Phase-Change Materials in Functional and Multifunctional Composites: A Review

Author:

Suchorowiec Katarzyna1,Paprota Natalia1ORCID,Pielichowska Kinga1ORCID

Affiliation:

1. Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

Phase-change materials (PCMs) have gained more attention during the last few decades. As the main function of these materials is to store and release energy in the form of latent heat during phase transitions, they perfectly fulfill the direction of modern research focused on energy-related topics. Although they have basic energy-related properties, recent research shows a need to upgrade those materials in terms of improving their common drawbacks like shape stability, leakage, and poor conductivity. The research related to PCM-based composites leads to imparting some additional functional properties such as different types of conversion abilities or extra performance such as shape memory and thermal protection. Together with a new emerging material group—aerogels (AGs), extra-light and highly porous matrices—PCMs could become functional and multifunctional materials. AG-PCM composites could be implemented in a large variety of applications in different sectors like energy, buildings, medical, defense, space technologies, and more. This study aims to help summarize current trends, methods, and works on PCM–aerogel composites in terms of developing new functional materials, especially for energy conversion purposes but also for improved conductivity, mechanical properties, and flame retardancy.

Funder

Polish National Science Centre

Ministry of Education and Science for the AGH University of Science and Technology in Kraków

Program “Excellence Initiative—Research University” for the AGH University of Krakow

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3