Mechanical Characteristics and Corrosion Behavior of Two New Titanium Alloys

Author:

Voiculescu Ionelia1ORCID,Brito-Garcia Santiago Jose2ORCID,González-Díaz Óscar M.3ORCID,Mirza-Rosca Julia24ORCID

Affiliation:

1. Faculty of Industrial Engineering and Robotics, Politehnica University of Bucharest, 060042 Bucharest, Romania

2. Mechanical Engineering Department, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

3. University Institute of Environmental Studies and Natural Resources (i-UNAT), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

4. Materials Engineering, and Welding Department, Transilvania University of Brasov, 500036 Brasov, Romania

Abstract

While Ti6Al4V is one of the most used titanium alloys in the biomaterials field, it is not without its challenges and limitations, among which very important is the modulus mismatch with the bone. This modulus mismatch can lead to stress shielding potentially leading to bone resorption and implant loosening. Researchers continue to explore alternative materials and modifications to address this challenge and improve the performance of biomaterials. Two new fabricated titanium alloys Ti-10Al and Ti-4Fe are analyzed in this paper from corrosion and elastic modulus points of view. Metallography, microhardness, open circuit potential, DC electrochemical linear polarization, and Electrochemical Impedance Spectroscopy were performed. It was found that the corrosion resistance measurement for the Ti4Fe alloy is two orders of magnitude lower than for the Ti10Al alloy as determined by the equivalent circuit simulation, which is also supported by the similar disparity in the corrosion rate values for the two alloys which was determined using the DC method. The modulus of elasticity values were fairly close, hovering about 35GPa, and were lower than those of many commercial alloys.

Funder

Romanian National Authority for Scientific Research, CNDI–UEFISCDI

Cabildo de Gran Canaria

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3