Molecular Dynamics Study of the Devitrification of Amorphous Copper Nanoparticles in Vacuum and in a Silver Shell

Author:

Poletaev Gennady12ORCID,Gafner Yuri1,Gafner Svetlana1,Bebikhov Yuriy3,Semenov Alexander3ORCID

Affiliation:

1. Physic Department, Katanov Khakas State University, Lenin pr. 90, 655017 Abakan, Russia

2. Information Technologies Faculty, Altai State Technical University, Lenin Str. 46, 656038 Barnaul, Russia

3. Polytechnic Institute Mirny Branch, North-Eastern Federal University, 678170 Mirny, Russia

Abstract

The process of the devitrification of copper nanoparticles in vacuum and in a silver shell during heating was studied using a molecular dynamics simulation. The results show that there is an inverse relationship between the particle diameter and devitrification temperature. As the size of the particles decreases, the temperature at which devitrification occurs increases due to a higher fraction of atoms near the interface. The presence of a silver shell leads to a significant increase in the devitrification temperature of the copper nanoparticles. For the considered particle sizes, the difference between the devitrification temperatures without a shell and with a shell ranged from 130 K for copper particles with a diameter of 11 nm to 250 K for 3 nm particles. The mechanisms of the nucleation of a crystalline phase in particles in vacuum and in a silver shell are significantly different. In the first case, crystalline nuclei are predominantly formed near the surface, while in the second case, on the contrary, they are formed within the particle’s volume.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3