The Use of Thin Films as Defect Sealants to Increase the Corrosion Resistance of Thermal Spray Coatings

Author:

Lanzutti Alex1ORCID,Sordetti Francesco1ORCID,Marin Elia1ORCID,Andreatta Francesco1,Carabillo Antonio12,Querini Matteo2,Porro Samuele3ORCID,Rondinella Alfredo1,Magnan Michele1,Fedrizzi Lorenzo1

Affiliation:

1. Polytechnic Department of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy

2. Eurolls S.p.A., Via degli Ortolani 54, 33040 Attimis, Italy

3. Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Thermal spray-coated components are widely used as wear-resistant coatings in many applications. However, these coatings have high levels of discontinuities that affect the corrosion resistance of the coated system. To reduce this problem, these coatings are usually sealed with liquid sealants (metals, organic or inorganic). The aim of this work is to seal the surface discontinuities of thermal-sprayed coatings using PVD and/or ALD coatings. To this end, CrN (arc deposition PVD) and TiO2 (ALD) coatings were deposited on thermal-sprayed alumina coatings. The samples produced were then analysed in both cross-sectional and planar views to detect the possible permeation of the thin film coatings into the thermal spray defects. Rf-GDOES measurements were performed to detect the very thin ALD deposit on the surface. The corrosion resistance of the sealed coatings was verified with immersion tests, wherein the OCP was monitored for 24 h, and potentiodynamic tests were performed after 15 min and 24 h immersions. The results showed that the thin films were not able to block the permeation of corrosive media, but they could reduce the permeation of corrosive media with a beneficial behaviour on corrosion resistance.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3