Abstract
Perinatal hypothyroidism impairs cerebellar organogenesis and results in motor coordination defects. The thyroid hormone receptor binds to corepressor complexes containing histone deacetylase (HDAC) 3 in the absence of ligands and acts as a transcriptional repressor. Although histone acetylation status is strongly correlated with transcriptional regulation, its role in cerebellar development remains largely unknown. We aimed to study whether the cerebellar developmental defects induced by perinatal hypothyroidism can be rescued by treatment with a specific HDAC3 inhibitor, RGFP966. Motor coordination was analyzed using three behavioral tests. The cerebella were subjected to RT-qPCR and chromatin immunoprecipitation assays for acetylated histone H3. The treatment with RGFP966 partially reversed the cerebellar morphological defects in perinatal hypothyroid mice. These findings were associated with the alleviation of motor coordination defects in these mice. In addition, the RGFP966 administration increased the mRNA levels of cerebellar thyroid hormone-responsive genes. These increases were accompanied by augmented histone acetylation status at these gene loci. These findings indicate that HDAC3 plays an important role in the cerebellar developmental defects induced by perinatal hypothyroidism. The HDAC3 inhibitor might serve as a novel therapeutic agent for hypothyroidism-induced cerebellar defects by acetylating histone tails and stimulating transcription at thyroid hormone-responsive gene loci.
Funder
Japan Society for the Promotion of Science
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献