Motion Planning for Autonomous Vehicles Based on Sequential Optimization

Author:

Diachuk Maksym,Easa Said M.ORCID

Abstract

This study presents the development and analysis of a technique for planning the autonomous vehicle (AV) motion references using sequential optimization. The method determines the trajectory plan, speed and acceleration distributions, and other AV kinematic parameters. The approach combines the basics of the finite element method (FEM) and nonlinear optimization with nonlinear constraints. First, we briefly described the generalization of representing an arbitrary function by finite elements (FE) within a road segment. We chose a one-dimensional FE with two nodes and three degrees of freedom (DOF) in a node corresponding to the 5th-degree polynomial. Next, we presented a method for defining the motion trajectory. The following are considered: the formation of a restricted space for the AV’s allowable maneuvering, the motion trajectory geometry and its relation with vehicle steerability parameters, cost functions and their influences on the desirable trajectory’s nature, and the compliance of nonlinear restrictions of the node parameters with the motion area boundaries. In the second stage, we derived a technique for optimizing the AV’s speed and acceleration redistributions. The model considers possible combinations of objective functions, limiting the kinematic parameters by the tire slip critical speed, maximum speed level, maximum longitudinal acceleration, and critical lateral acceleration. In the simulation section, we compared several variants of trajectories and versions of distributing the longitudinal speed and acceleration curves. The advantages, drawbacks, and conclusions regarding the proposed technique are presented.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3