Comparisons on the Local Impact Response of Sandwich Panels with In-Plane and Out-Of-Plane Honeycomb Cores

Author:

Liu Jiefu123,Wang Genda123ORCID,Lei Ziping123

Affiliation:

1. School of Traffic & Transportation Engineering, Central South University, Changsha 410000, China

2. Key Laboratory of Traffic Safety on Track, Ministry of Education, Changsha 410000, China

3. Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Changsha 410000, China

Abstract

The influence of in-plane and out-of-plane element array effects of honeycomb on the impact characteristics of sandwich panels was studied under different local impact speeds. The numerical model is calibrated by air cannon impact experiment and used to conduct the investigations. It is demonstrated that the sandwich panel with in-plane honeycomb core (SPIH) exhibits a response mode with larger local indentation and smaller overall deflection, and also shows superior energy absorption as compared to the sandwich panel with out-of-plane honeycomb core (SPOH). When facing more severe impact conditions, SPIH shows better anti-penetration capability. When the impact radius is 20 mm and the impact velocity is 83 m/s, the SHOP is penetrated while the SHIP is not. When the impact radius is 20 mm and the impact velocity is 100 m/s, the total absorbed energy of SHIP is 59.79% higher than that of SPOH, and the impact residual velocity is 32.67% lower. Furthermore, the impact mitigation performances of SPIH with different density gradient cores are investigated by comparing their deformation modes and energy absorption characteristics. The results indicate that different gradient schemes enable sandwich panels to perform multiple functions. The positive gradient design in the cell stretching direction is beneficial to reduce the overall deflection and improve the energy absorption effect.

Funder

The Independent Funds of State key laboratory of high performance complex manufacturing

The CHINA Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3