Investigation of the Crystallographic Evolution Sequence of Nano-Precipitation via HRTEM in Cu-Bearing Ultra-Low Carbon Steel

Author:

Zhang Weina1ORCID,Gao Zhanjie1,Wei Hao1,Zhang Huimin1,Chen Zejin1,Xue Wenying1,Shen Yongfeng2ORCID,Liu Zhenyu1

Affiliation:

1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

The precipitation behavior of Cu-bearing ultra-low carbon steel after step quenching and tempering at 923 K for 0.5–2.5 h was investigated. The size, quantity, and characteristic distribution of nano-precipitates were analyzed using transmission electron microscopy, and the microstructure of B2 (an ordered structure belonging to the body-centered cubic structure), 9R (a special triclinic lattice that has characteristics of rhombohedral structure), 3R (a special triclinic lattice like 9R), and FCT (face-centered tetragonal lattices) were accurately determined. The relationship between nano-precipitates and mechanical properties under different heat treatment processes was obtained, revealing that nano-precipitates effectively enhanced the yield strength of Cu-bearing ultra-low carbon steel. There were two forms of crystal structure evolution sequence of precipitation: B2→multi twin 9R→detwined 9R→FCT→FCC and B2→multi-twin 9R→detwinned 9R→3R→FCT→FCC. The morphology of the precipitated particles during the growth process changed from spherical to ellipsoidal and finally to rod-shaped. It was proven that a stable 3R structure existed due to the coexistence of 9R, 3R, and FCT structures in the same precipitate particle.

Funder

National Natural Science Foundation of China

Liaoning Provincial Science of China

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3