Bubble Effect Phenomenon in Modern Transformer Insulation Systems Using Aramid-Based Materials and Alternative Insulating Liquids

Author:

Lewandowski Kamil12,Moranda Hubert1ORCID,Szewczyk Radoslaw3

Affiliation:

1. Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A Str., 61-138 Poznan, Poland

2. Power Engineering Transformatory Sp. z o.o., Gdynska 83 Str., 62-004 Czerwonak, Poland

3. DuPont Polska Sp. z o.o., Al. Jerozolimskie 93, 02-001 Warszawa, Poland

Abstract

One of the possible causes of transformer failures is high moisture in the winding insulation system. In an extreme case, when the critical temperature is exceeded, a sudden release of water vapor from the transformer insulation, called the bubble effect, can occur. This article analyzes the initiation temperature of the bubble phenomenon in various solid insulation materials (Kraft cellulose paper and aramid-based high-temperature papers such as Nomex® 910 and Nomex® 926) immersed in two electro-insulating liquids (mineral oil and Midel 7131 synthetic ester). The initiation temperature of the bubble effect depends mainly on the moisture content of the solid insulation, but it was found to be slightly lower for high-temperature materials than for cellulose. However, after taking into account the differences related to uneven water absorption of the tested materials, the differences in the initiation temperature of individual solid materials are very small. Synthetic ester, compared to mineral oil, slightly increases the bubble initiation temperature, regardless of the solid material used.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3