An Urban Built Environment Analysis Approach for Street View Images Based on Graph Convolutional Neural Networks

Author:

Liu Changmin1,Wang Yang2,Li Weikang2,Tao Liufeng234,Hu Sheng5ORCID,Hao Mengqi2

Affiliation:

1. School of Information Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030606, China

2. School of Computer Sciences, China University of Geosciences, Wuhan 430074, China

3. Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China

4. Yichang Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, Yichang 443002, China

5. Faculty of Engineering, Beidou Research Institute, South China Normal University, Foshan 528225, China

Abstract

Traditionally, research in the field of traffic safety has predominantly focused on two key areas—the identification of traffic black spots and the analysis of accident causation. However, such research heavily relies on historical accident records obtained from the traffic management department, which often suffer from missing or incomplete information. Moreover, these records typically offer limited insight into the various attributes associated with accidents, thereby posing challenges to comprehensive analyses. Furthermore, the collection and management of such data incur substantial costs. Consequently, there is a pressing need to explore how the features of the urban built environment can effectively facilitate the accurate identification and analysis of traffic black spots, enabling the formulation of effective management strategies to support urban development. In this study, we research the Kowloon Peninsula in Hong Kong, with a specific focus on road intersections as the fundamental unit of our analysis. We propose leveraging street view images as a valuable source of data, enabling us to depict the urban built environment comprehensively. Through the utilization of models such as random forest approaches, we conduct research on traffic black spot identification, attaining an impressive accuracy rate of 87%. To account for the impact of the built environment surrounding adjacent road intersections on traffic black spot identification outcomes, we adopt a node-based approach, treating road intersections as nodes and establishing spatial relationships between them as edges. The features characterizing the built environment at these road intersections serve as node attributes, facilitating the construction of a graph structure representation. By employing a graph-based convolutional neural network, we enhance the traffic black spot identification methodology, resulting in an improved accuracy rate of 90%. Furthermore, based on the distinctive attributes of the urban built environment, we analyze the underlying causes of traffic black spots. Our findings highlight the significant influence of buildings, sky conditions, green spaces, and billboards on the formation of traffic black spots. Remarkably, we observe a clear negative correlation between buildings, sky conditions, and green spaces, while billboards and human presence exhibit a distinct positive correlation.

Funder

Hubei Key Laboratory of Intelligent Vision-Based Monitoring for Hydroelectric Engineering

The Hubei Key Laboratory of Intelligent Geo-Information Processing

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3