Fault Diagnosis of Inter-Turn Fault in Permanent Magnet-Synchronous Motors Based on Cycle-Generative Adversarial Networks and Deep Autoencoder

Author:

Huang Wenkuan1ORCID,Chen Hongbin1,Zhao Qiyang1

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

This paper addresses the issue of the difficulty in obtaining inter-turn fault (ITF) samples in electric motors, specifically in permanent magnet-synchronous motors (PMSMs), where the number of ITF samples in the stator windings is severely lacking compared to healthy samples. To effectively identify these faults, an improved fault diagnosis method based on the combination of a cycle-generative adversarial network (GAN) and a deep autoencoder (DAE) is proposed. In this method, the Cycle GAN is used to expand the collection of fault samples for PMSMs, while the DAE enhances the capability to extract and analyze these fault samples, thus improving the accuracy of fault diagnosis. The experimental results demonstrate that Cycle GAN exhibits an excellent capability to generate ITF fault samples. The proposed method achieves a diagnostic accuracy rate of up to 98.73% for ITF problems.

Publisher

MDPI AG

Reference25 articles.

1. Review of Research on Fault Diagnosis of Permanent Magnet Synchronous Motor;Wu;Chin. J. Eng. Des.,2021

2. Maintenance strategies and energy efficiency: A review;Firdaus;J. Qual. Maint. Eng.,2023

3. Detection of Stator Inter-Turn Short-Circuit Fault in PMSM Based on Improved Wavelet Packet Transform and Signal Fusion;Chen;Trans. China Electrotech. Soc.,2020

4. Inter-turn Fault Diagnosis of Permanent Magnet Synchronous Machine Considering Model Predictive Control;Ding;Proc. CSEE,2019

5. Online Detection Method for Inter turn Short circuit fault of PMSM;Peng;Adv. Technol. Electr. Eng. Energy,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3