A Review of the Studies on CO2–Brine–Rock Interaction in Geological Storage Process

Author:

Peter Ameh,Yang Dongmin,Eshiet Kenneth Imo-Imo IsraelORCID,Sheng Yong

Abstract

CO2–brine–rock interaction impacts the behavior and efficiency of CO2 geological storage; a thorough understanding of these impacts is important. A lot of research in the past has considered the nature and impact of CO2–brine–rock interaction and much has been learned. Given that the solubility and rate of mineralization of CO2 in brine under reservoir conditions is slow, free and mobile, CO2 will be contained in the reservoir for a long time until the phase of CO2 evolves. A review of independent research indicates that the phase of CO2 affects the nature of CO2–brine–rock interaction. It is important to understand how different phases of CO2 that can be present in a reservoir affects CO2–brine–rock interaction. However, the impact of the phase of CO2 in a CO2–brine–rock interaction has not been given proper attention. This paper is a systematic review of relevant research on the impact of the phase of CO2 on the behavior and efficiency of CO2 geological storage, extending to long-term changes in CO2, brine, and rock properties; it articulates new knowledge on the effect of the phase of CO2 on CO2–brine–rock behavior in geosequestration sites and highlights areas for further development.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3