Abstract
Diesel engines show poor performance and high emissions under cold-start conditions. The intake manifold burner is an effective method to increase the intake air temperature and improve engine performance. In this paper, a visualization system was employed to investigate the combustion process of the intake manifold burner. The effects of diesel flow rate and airflow velocity on combustion performance were investigated. The combustion process of the intake manifold burner showed four stages: preparing stage A, rapid development stage B, steady-development stage C, and stable stage D. Flame stripping was found in stages C and D, presenting the instability of the combustion process. With the increase in air flow velocity from 1.4 m/s to 3.0 m/s, the flame stripping was enhanced, leading to the increasing combustion instability and regular flame penetration fluctuations. The average temperature rise and combustion efficiency increased with the increasing diesel flow rate, indicating the combustion enhancement. Comparison of temperature rise and combustion efficiency under 2.0 m/s and 10.0 m/s showed that stronger cross wind enhances the heat convection, improving the temperature uniformity and combustion efficiency.
Funder
National Natural Science Foundation of China
Beijing Natural Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献