Study on Single-Tree Extraction Method for Complex RGB Point Cloud Scenes

Author:

Xia Kai123,Li Cheng123,Yang Yinhui123,Deng Susu4,Feng Hailin123

Affiliation:

1. College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China

2. Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China

3. Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China

4. College of Environmental and Resource Science, Zhejiang A & F University, Hangzhou 311300, China

Abstract

With the development of sensor technology and point cloud generation techniques, there has been an increasing amount of high-quality forest RGB point cloud data. However, popular clustering-based point cloud segmentation methods are usually only suitable for pure forest scenes and not ideal for scenes with multiple ground features or complex terrain. Therefore, this study proposes a single-tree point cloud extraction method that combines deep semantic segmentation and clustering. This method first uses a deep semantic segmentation network, Improved-RandLA-Net, which is developed based on RandLA-Net, to extract point clouds of specified tree species by adding an attention chain to improve the model’s ability to extract channel and spatial features. Subsequently, clustering is employed to extract single-tree point clouds from the segmented point clouds. The feasibility of the proposed method was verified in the Gingko site, the Lin’an Pecan site, and a Fraxinus excelsior site in a conference center. Finally, semantic segmentation was performed on three sample areas using pre- and postimproved RandLA-Net. The experiments demonstrate that Improved-RandLA-Net had significant improvements in Accuracy, Precision, Recall, and F1 score. At the same time, based on the semantic segmentation results of Improved-RandLA-Net, single-tree point clouds of three sample areas were extracted, and the final single-tree recognition rates for each sample area were 89.80%, 75.00%, and 95.39%, respectively. The results demonstrate that our proposed method can effectively extract single-tree point clouds in complex scenes.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Key R&D Projects in Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3