Knowledge Granularity Attribute Reduction Algorithm for Incomplete Systems in a Clustering Context

Author:

Liang Baohua123,Jin Erli3,Wei Liangfen3,Hu Rongyao4

Affiliation:

1. Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China

2. School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China

3. School of Computer and Artificial Intelligence, Chaohu University, Hefei 238000, China

4. CBICA, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

The phenomenon of missing data can be seen everywhere in reality. Most typical attribute reduction models are only suitable for complete systems. But for incomplete systems, we cannot obtain the effective reduction rules. Even if there are a few reduction approaches, the classification accuracy of their reduction sets still needs to be improved. In order to overcome these shortcomings, this paper first defines the similarities of intra-cluster objects and inter-cluster objects based on the tolerance principle and the mechanism of knowledge granularity. Secondly, attributes are selected on the principle that the similarity of inter-cluster objects is small and the similarity of intra-cluster objects is large, and then the knowledge granularity attribute model is proposed under the background of clustering; then, the IKAR algorithm program is designed. Finally, a series of comparative experiments about reduction size, running time, and classification accuracy are conducted with twelve UCI datasets to evaluate the performance of IKAR algorithms; then, the stability of the Friedman test and Bonferroni–Dunn tests are conducted. The experimental results indicate that the proposed algorithms are efficient and feasible.

Funder

Natural Science Foundation of China

Key Subject of Chaohu University

Quality Improvement Project of Chaohu University on Discipline Construction

Provincial Natural Science Research Program of Higher Education Institutions of Anhui province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3