An Abstraction Layer Exploiting Voice Assistant Technologies for Effective Human—Robot Interaction

Author:

Alonso Ruben,Concas EmanueleORCID,Reforgiato Recupero DiegoORCID

Abstract

A lot of people have neuromuscular problems that affect their lives leading them to lose an important degree of autonomy in their daily activities. When their disabilities do not involve speech disorders, robotic wheelchairs with voice assistant technologies may provide appropriate human–robot interaction for them. Given the wide improvement and diffusion of Google Assistant, Apple’s Siri, Microsoft’s Cortana, Amazon’s Alexa, etc., such voice assistant technologies can be fully integrated and exploited in robotic wheelchairs to improve the quality of life of affected people. As such, in this paper, we propose an abstraction layer capable of providing appropriate human–robot interaction. It allows use of voice assistant tools that may trigger different kinds of applications for the interaction between the robot and the user. Furthermore, we propose a use case as a possible instance of the considered abstraction layer. Within the use case, we chose existing tools for each component of the proposed abstraction layer. For example, Google Assistant was employed as a voice assistant tool; its functions and APIs were leveraged for some of the applications we deployed. On top of the use case thus defined, we created several applications that we detail and discuss. The benefit of the resulting Human–Computer Interaction is therefore two-fold: on the one hand, the user may interact with any of the developed applications; on the other hand, the user can also rely on voice assistant tools to receive answers in the open domain when the statement of the user does not enable any of the applications of the robot. An evaluation of the presented instance was carried out using the Software Architecture Analysis Method, whereas the user experience was evaluated through ad-hoc questionnaires. Our proposed abstraction layer is general and can be instantiated on any robotic platform including robotic wheelchairs.

Funder

H2020 Leadership in Enabling and Industrial Technologies

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3