Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics

Author:

Chen Sixuan,Xu Yue,Ye Meiping,Li Yang,Sun Yu,Liang Jiawei,Lu Jiaming,Wang Zhengge,Zhu Zhengyang,Zhang Xin,Zhang Bing

Abstract

This study aimed to investigate the feasibility of predicting oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in diffuse gliomas by developing a deep learning approach using MRI radiomics. A total of 111 patients with diffuse gliomas participated in the retrospective study (56 patients with MGMT promoter methylation and 55 patients with MGMT promoter unmethylation). The radiomics features of the two regions of interest (ROI) (the whole tumor area and the tumor core area) for four sequences, including T1 weighted image (T1WI), T2 weighted image (T2WI), apparent diffusion coefficient (ADC) maps, and T1 contrast-enhanced (T1CE) MR images were extracted and jointly fed into the residual network. Then the deep learning method was developed and evaluated with a five-fold cross-validation, where in each fold, the dataset was randomly divided into training (80%) and validation (20%) cohorts. We compared the performance of all models using area under the curve (AUC) and average accuracy of validation cohorts and calculated the 10 most important features of the best model via a class activation map. Based on the ROI of the whole tumor, the predictive capacity of the T1CE and ADC model achieved the highest AUC value of 0.85. Based on the ROI of the tumor core, the T1CE and ADC model achieved the highest AUC value of 0.90. After comparison, the T1CE combined with the ADC model based on the ROI of the tumor core exhibited the best performance, with the highest average accuracy (0.91) and AUC (0.90) among all models. The deep learning method using MRI radiomics has excellent diagnostic performance with a high accuracy in predicting MGMT promoter methylation in diffuse gliomas.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, Nanjing University

Publisher

MDPI AG

Subject

General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3