A Novel Aptamer Biosensor Based on a Localized Surface Plasmon Resonance Sensing Chip for High-Sensitivity and Rapid Enrofloxacin Detection

Author:

Wang Pan1,Ding Liyun12,Zhang Yumei1,Jiang Xingdong2

Affiliation:

1. National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China

2. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

Abstract

Enrofloxacin, a fluoroquinolone widely used in animal husbandry, presents environmental and human health hazards due to its stability and incomplete hydrolysis leading to residue accumulation. To address this concern, a highly sensitive aptamer biosensor utilizing a localized surface plasmon resonance (LSPR) sensing chip and microfluidic technology was developed for rapid enrofloxacin residue detection. AuNPs were prepared by the seed method and the AuNPs-Apt complexes were immobilized on the chip by the sulfhydryl groups modified on the end of the aptamer. The properties and morphologies of the sensing chip and AuNPs-Apt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, and scanning electron microscope (SEM), respectively. The sensing chip was able to detect enrofloxacin in the range of 0.01–100 ng/mL with good linearity, and the relationship between the response of the sensing chip and the concentration was Δλ (nm) = 1.288log ConENR (ng/mL) + 5.245 (R2 = 0.99), with the limit of detection being 0.001 ng/mL. The anti-interference, repeatability, and selectivity of this sensing chip were studied in detail. Compared with other sensors, this novel aptamer biosensor based on AuNPs-Apt complexes is expected to achieve simple, stable, and economical application in the field of enrofloxacin detection.

Funder

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3