Affiliation:
1. Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-5358, Japan
Abstract
Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field.
Funder
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology (MEXT) scholarship
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献