Synthesis of Multicolor Carbon Dots Catalyzed by Inorganic Salts with Tunable Nonlinear Optical Properties

Author:

Niu Xiaoqing1,Hou Ruipeng2,Zhang Luo1,Gao Hongli1,Hu Junzhou1

Affiliation:

1. Institute of Geography, Henan Academy of Sciences, Zhengzhou 450052, China

2. Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China

Abstract

The nonlinear optical properties of carbon dots have been in the spotlight in recent years. In light of the complexity and diversity of factors affecting the nonlinear optical properties of carbon dots, how to reveal the origin and physical mechanism of the nonlinear optical properties of carbon dots accurately has become a problem. In this work, a template-free method was designed to prepare carbon dots via solid-phase reaction with phloroglucinol as a single carbon source and sodium bisulfate as the catalyst. This method is simple, green, safe, and easy to be prepared on a large scale. Three carbon dots with different luminous colors were obtained by simply adjusting the reaction temperature. The rise of reaction temperature affects the surface functional groups, and then hinders the luminescence of surface states, leading to the change of luminescence properties. The nonlinear optical properties of carbon dots were analyzed by the Z-scan technique. Surprisingly, all carbon dots have nonlinear optical responses, but there are differences in performance. Results prove the increase in sp2 domains may contribute to the significant improvement of the nonlinear optical properties of carbon dots, indicating a direction to improve the nonlinear optical properties of carbon dots.

Funder

Henan Academy of Sciences

Colleges and Universities

Henan Provincial Science and Technology Research

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3