Finite Bending of Fiber-Reinforced Visco-Hyperelastic Material: Analytical Approach and FEM

Author:

Pashazadeh Jafar1ORCID,Ostadrahimi Alireza2ORCID,Baghani Mostafa1ORCID,Choi Eunsoo3ORCID

Affiliation:

1. School of Mechanical Engineering, Collage of Engineering, University of Tehran, Tehran 14155-6455, Iran

2. Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA

3. Department of Civil and Environmental Engineering, Hongik University, Seoul 04066, Republic of Korea

Abstract

This paper presents a new anisotropic visco-hyperelastic constitutive model for finite bending of an incompressible rectangular elastomeric material. The proposed approach is based on the Mooney–Rivlin anisotropic strain energy function and non-linear visco-hyperelastic method. In this study, we aim to examine the mechanical response of a reinforced viscoelastic rectangular bar with a group of fibers under bending. Anisotropic materials are typically composed of one (or more) family of reinforcing fibers embedded within a soft matrix material. This operation may lead to an enhancement in the strength and stiffness of soft materials. In addition, a finite element simulation is carried out to validate the accuracy of the analytical solution. In this research, the well-known stress relaxation test, as well as the multi-step relaxation test, are examined both analytically and numerically. The results obtained from the analytical solution are found to be in good agreement with those from the finite element method. Therefore, it can be deduced that the proposed model is competent in describing the mechanical behavior of fiber-reinforced materials when subjected to finite bending deformations.

Funder

National Research Foundation of Korea (NRF) funded by the Korean government

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3