A Novel Superhard, Wear-Resistant, and Highly Conductive Cu-MoSi2 Coating Fabricated by High-Speed Laser Cladding Technique

Author:

Li Yanmiao1,Zhao Xiaojun1,Zhai Pengyuan2,Fan Pengyu2,Xu Jiahui1,Xu Yuefan1,Yu Zengkai1,Li Muyang1,Zhang Yongtong3,Gao Dawei3,Liu Sainan4,Cai Zhenyang1,Xiao Lairong1

Affiliation:

1. School of Materials Science and Engineering, Central South University, Changsha 410083, China

2. New Technology Promotion Institute of China Ordnance Industries, Beijing 100089, China

3. Henan Jianghe Machinery Co., Ltd., Pingdingshan 467337, China

4. Center for Mineral Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

Abstract

The pursuit of an advanced functional coating that simultaneously combines high hardness, wear resistance, and superior electrical conductivity has remained an elusive goal in the field of copper alloy surface enhancement. Traditional solid solution alloying methods often lead to a significant increase in electron scattering, resulting in a notable reduction in electrical conductivity, making it challenging to achieve a balance between high hardness, wear resistance, and high conductivity. The key lies in identifying a suitable microstructure where dislocation motion is effectively hindered while minimizing the scattering of conductive electrons. In this study, a novel Cu-MoSi2 coating was successfully fabricated on a CuCrZr alloy surface using the coaxial powder feeding high-speed laser cladding technique, with the addition of 10–30% MoSi2 particles. The coating significantly enhances the hardness and wear resistance of the copper substrate while maintaining favorable electrical conductivity. As the quantity of MoSi2 particles increases, the coating’s hardness and wear resistance gradually improve, with minimal variance in conductivity. Among the coatings, the Cu-30%MoSi2 coating stands out with the highest hardness (974.5 HV0.5) and the lowest wear amount (0.062 mg/km), approximately 15 times the hardness of the copper base material (65 HV0.5) and only 0.45% of the wear amount (13.71 mg/km). Additionally, the coating exhibits a resistivity of 0.173 × 10−6 Ω·m. The extraordinary hardness and wear resistance of these coatings can be attributed to the dispersion strengthening effect of MoxSiy particles, while the high electrical conductivity is due to the low silicon content dissolved into the copper from the released MoSi2 particles, as well as the rapid cooling rates associated with the high-speed laser cladding process.

Funder

National Defense Basic Scientific Research Program of China

Science and Technology Innovation Program for the High-tech Sector of Hunan Province under Grant

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3