Radiata Pine Wood Treated with Copper Nanoparticles: Leaching Analysis and Fungal Degradation

Author:

Aguayo María GracielaORCID,Oviedo ClaudiaORCID,Reyes Laura,Navarrete José,Gómez Liset,Torres Hugo,Gaviño GonzaloORCID,Trollund Ejnar

Abstract

Radiata pine is the main wood species used in the Chilean construction industry, but it must be protected due to its low natural durability. Chemical protection of wood by impregnation allows for a more efficient utilization of the forest resources by extending its useful life. The use of nanoparticles in wood protection has garnered great interest during the last decade, due to their unique physicochemical properties, different from those of larger sized materials. In this research, the impregnation of radiata pine wood with copper nanoparticles (CuNP) was studied in terms of retention, penetration, leaching, and its protective effect against wood rot fungi growth according to EN 113, AWPA A3-91, A9-18, and E11-16. Penetration analysis confirmed a uniform distribution across the wood, with total penetration in the impregnated samples with the highest concentration solution of CuNP. Retention values of the impregnated wood increased proportionally with the concentration of nanoparticles evaluated by EDXRF. Leaching analysis showed copper removal during the first hours of the test, with a constant leaching rate up to 144 h. Impregnated wood mass loss (ML) due to exposure to Gloeophyllum trabeum and Rhodonia placenta fungi were significantly reduced regardless of the CuNP concentration or fungi tested, with an ML smaller than 5% and smaller than 14% for leached samples.

Funder

CONICYT FONDEF IDeA I+D 2019

Publisher

MDPI AG

Subject

Forestry

Reference55 articles.

1. Durability of wood treated with aatmos and caffeine-towards the long-term carbon stor-age;Broda;Maderas. Cienc. Tecnol.,2018

2. Treatability of wood for pressure treatment processes: a literature review

3. Decay resistance of wood treated with copper oxide nanoparticles synthesised using leaf extracts of Lantana camara L. and Nerium oleander L.

4. Wood Handbook-Wood as an Engineering Material,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3