Analytical Studies of Antimicrobial Peptides as Diagnostic Biomarkers for the Detection of Bacterial and Viral Pneumonia

Author:

Bakare Olalekan OlanrewajuORCID,Gokul ArunORCID,Keyster MarshallORCID

Abstract

Pneumonia remains one of the leading causes of infectious mortality and significant economic losses among our growing population. The lack of specific biomarkers for correct and timely diagnosis to detect patients’ status is a bane towards initiating a proper treatment plan for the disease; thus, current biomarkers cannot distinguish between pneumonia and other associated conditions such as atherosclerotic plaques and human immunodeficiency virus (HIV). Antimicrobial peptides (AMPs) are potential candidates for detecting numerous illnesses due to their compensatory roles as theranostic molecules. This research sought to generate specific data for parental AMPs to identify viral and bacterial pneumonia pathogens using in silico technology. The parental antimicrobial peptides (AMPs) used in this work were AMPs discovered in our previous in silico analyses using the HMMER algorithm, which were used to generate derivative (mutated) AMPs that would bind with greater affinity, in order to detect the bacterial and viral receptors using an in silico site-directed mutagenesis approach. These AMPs’ 3D structures were subsequently predicted and docked against receptor proteins. The result shows putative AMPs with the potential capacity to detect pneumonia caused by these pathogens through their binding precision with high sensitivity, accuracy, and specificity for possible use in point-of-care diagnosis. These peptides’ tendency to detect receptor proteins of viral and bacterial pneumonia with precision justifies their use for differential diagnostics, in an attempt to reduce the problems of indiscriminate overuse, toxicity due to the wrong prescription, bacterial resistance, and the scarcity and high cost of existing pneumonia antibiotics.

Funder

Department of Science and Technology

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3