Valve Endothelial Cell Exposure to High Levels of Flow Oscillations Exacerbates Valve Interstitial Cell Calcification

Author:

Hsu Chia-Pei Denise,Tchir Alexandra,Mirza AsadORCID,Chaparro Daniel,Herrera Raul E.,Hutcheson Joshua D.,Ramaswamy SharanORCID

Abstract

The aortic valve facilitates unidirectional blood flow to the systemic circulation between the left cardiac ventricle and the aorta. The valve’s biomechanical function relies on thin leaflets to adequately open and close over the cardiac cycle. A monolayer of valve endothelial cells (VECs) resides on the outer surface of the aortic valve leaflet. Deeper within the leaflet are sublayers of valve interstitial cells (VICs). Valve tissue remodeling involves paracrine signaling between VECs and VICs. Aortic valve calcification can result from abnormal paracrine communication between these two cell types. VECs are known to respond to hemodynamic stimuli, and, specifically, flow abnormalities can induce VEC dysfunction. This dysfunction can subsequently change the phenotype of VICs, leading to aortic valve calcification. However, the relation between VEC-exposed flow oscillations under pulsatile flow to the progression of aortic valve calcification by VICs remains unknown. In this study, we quantified the level of flow oscillations that VECs were exposed to under dynamic culture and then immersed VICs in VEC-conditioned media. We found that VIC-induced calcification was augmented under maximum flow oscillations, wherein the flow was fully forward for half the cardiac cycle period and fully reversed for the other half. We were able to computationally correlate this finding to specific regions of the aortic valve that experience relatively high flow oscillations and that have been shown to be associated with severe calcified deposits. These findings establish a basis for future investigations on engineering calcified human valve tissues and its potential for therapeutic discovery of aortic valve calcification.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ion Channels in the Development and Remodeling of the Aortic Valve;International Journal of Molecular Sciences;2023-03-20

2. Aortic stenosis and the haemostatic system;Cardiovascular Research;2022-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3