Blood Urea Nitrogen-to-Albumin Ratio May Predict Mortality in Patients with Traumatic Brain Injury from the MIMIC Database: A Retrospective Study

Author:

Guo Yiran1ORCID,Leng Yuxin2ORCID,Gao Chengjin1ORCID

Affiliation:

1. Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

2. Critical Care Medicine Department, Peking University Third Hospital, Beijing 100191, China

Abstract

Traumatic brain injury (TBI), a major global health burden, disrupts the neurological system due to accidents and other incidents. While the Glasgow coma scale (GCS) gauges neurological function, it falls short as the sole predictor of overall mortality in TBI patients. This highlights the need for comprehensive outcome prediction, considering not just neurological but also systemic factors. Existing approaches relying on newly developed biomolecules face challenges in clinical implementation. Therefore, we investigated the potential of readily available clinical indicators, like the blood urea nitrogen-to-albumin ratio (BAR), for improved mortality prediction in TBI. In this study, we investigated the significance of the BAR in predicting all-cause mortality in TBI patients. In terms of research methodologies, we gave preference to machine learning methods due to their exceptional performance in clinical support in recent years. Initially, we obtained data on TBI patients from the Medical Information Mart for Intensive Care database. A total of 2602 patients were included, of whom 2260 survived and 342 died in hospital. Subsequently, we performed data cleaning and utilized machine learning techniques to develop prediction models. We employed a ten-fold cross-validation method to obtain models with enhanced accuracy and area under the curve (AUC) (Light Gradient Boost Classifier accuracy, 0.905 ± 0.016, and AUC, 0.888; Extreme Gradient Boost Classifier accuracy, 0.903 ± 0.016, and AUC, 0.895; Gradient Boost Classifier accuracy, 0.898 ± 0.021, and AUC, 0.872). Simultaneously, we derived the importance ranking of the variable BAR among the included variables (in Light Gradient Boost Classifier, the BAR ranked fourth; in Extreme Gradient Boost Classifier, the BAR ranked sixth; in Gradient Boost Classifier, the BAR ranked fifth). To further evaluate the clinical utility of BAR, we divided patients into three groups based on their BAR values: Group 1 (BAR < 4.9 mg/g), Group 2 (BAR ≥ 4.9 and ≤10.5 mg/g), and Group 3 (BAR ≥ 10.5 mg/g). This stratification revealed significant differences in mortality across all time points: in-hospital mortality (7.61% vs. 15.16% vs. 31.63%), as well as one-month (8.51% vs. 17.46% vs. 36.39%), three-month (9.55% vs. 20.14% vs. 41.84%), and one-year mortality (11.57% vs. 23.76% vs. 46.60%). Building on this observation, we employed the Cox proportional hazards regression model to assess the impact of BAR segmentation on survival. Compared to Group 1, Groups 2 and 3 had significantly higher hazard ratios (95% confidence interval (CI)) for one-month mortality: 1.77 (1.37–2.30) and 3.17 (2.17–4.62), respectively. To further underscore the clinical potential of BAR as a standalone measure, we compared its performance to established clinical scores, like sequential organ failure assessment (SOFA), GCS, and acute physiology score III(APS-III), using receiver operator characteristic curve (ROC) analysis. Notably, the AUC values (95%CI) of the BAR were 0.67 (0.64–0.70), 0.68 (0.65–0.70), and 0.68 (0.65–0.70) for one-month mortality, three-month mortality, and one-year mortality. The AUC value of the SOFA did not significantly differ from that of the BAR. In conclusion, the BAR is a highly influential factor in predicting mortality in TBI patients and should be given careful consideration in future TBI prediction research. The blood urea nitrogen-to-albumin ratio may predict mortality in TBI patients.

Funder

Shanghai Municipal Health Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3