Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today?

Author:

Kim Matthew1,Wang Jen-Yeu1ORCID,Lu Weiguo2,Jiang Hao3,Stojadinovic Strahinja2ORCID,Wardak Zabi2,Dan Tu2,Timmerman Robert2,Wang Lei1,Chuang Cynthia1,Szalkowski Gregory1,Liu Lianli1ORCID,Pollom Erqi1,Rahimy Elham1,Soltys Scott1ORCID,Chen Mingli2,Gu Xuejun12

Affiliation:

1. Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA

2. Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA

3. NeuralRad LLC, Madison, WI 53717, USA

Abstract

Detection and segmentation of brain metastases (BMs) play a pivotal role in diagnosis, treatment planning, and follow-up evaluations for effective BM management. Given the rising prevalence of BM cases and its predominantly multiple onsets, automated segmentation is becoming necessary in stereotactic radiosurgery. It not only alleviates the clinician’s manual workload and improves clinical workflow efficiency but also ensures treatment safety, ultimately improving patient care. Recent strides in machine learning, particularly in deep learning (DL), have revolutionized medical image segmentation, achieving state-of-the-art results. This review aims to analyze auto-segmentation strategies, characterize the utilized data, and assess the performance of cutting-edge BM segmentation methodologies. Additionally, we delve into the challenges confronting BM segmentation and share insights gleaned from our algorithmic and clinical implementation experiences.

Funder

NIH

SBIR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3