A Portable Servoregulation Controller to Automate CO2 Removal in Artificial Lungs

Author:

Shaikh NavidORCID,Zhang Andrew,Jenter Jesse,Nikpreljevic Brandon,Toomasian John,Lynch William,Rojas-Peña Alvaro,Bartlett Robert H.,Potkay Joseph A.ORCID

Abstract

Artificial lung (AL) systems provide respiratory support to patients with severe lung disease, but none can adapt to the changing respiratory needs of the patients. Precisely, none can automatically adjust carbon dioxide (CO2) removal from the blood in response to changes in patient activity or disease status. Because of this, all current systems limit patient comfort, activity level, and rehabilitation. A portable servoregulation controller that automatically modulates CO2 removal in ALs to meet the real-time metabolic demands of the patient is described. The controller is based on a proportional-integral-derivative (PID) based closed-loop feedback control system that modulates sweep gas (air) flow through the AL to maintain a target exhaust gas CO2 partial pressure (target EGCO2 or tEGCO2). The presented work advances previous research by (1) using gas-side sensing that avoids complications and clotting associated with blood-based sensors, (2) incorporating all components into a portable, battery-powered package, and (3) integrating smart moisture removal from the AL to enable long term operation. The performance of the controller was tested in vitro for ∼12 h with anti-coagulated bovine blood and 5 days with distilled water. In tests with blood, the sweep gas flow was automatically adjusted by the controller rapidly (<2 min) meeting the specified tEGCO2 level when confronted with changes in inlet blood partial pressure of CO2 (pCO2) levels at various AL blood flows. Overall, the CO2 removal from the AL showed a strong correlation with blood flow rate and blood pCO2 levels. The controller successfully operated continuously for 5 days when tested with water. This study demonstrates an important step toward ambulatory AL systems that automatically modulate CO2 removal as required by lung disease patients, thereby allowing for physiotherapy, comfort, and activity.

Funder

National Institutes of Health

United States Department of Veterans Affairs

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3