Artificial Intelligence for Detecting and Quantifying Fatty Liver in Ultrasound Images: A Systematic Review

Author:

Alshagathrh Fahad MuflihORCID,Househ Mowafa Said

Abstract

Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches. Objective: This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease. Methodology: A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Results: Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity). Conclusion: AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3