Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography

Author:

Padhee Swati,Johnson Mark,Yi HangORCID,Banerjee Tanvi,Yang ZifengORCID

Abstract

Computational fluid dynamics (CFD) is widely employed to predict hemodynamic characteristics in arterial models, while not friendly to clinical applications due to the complexity of numerical simulations. Alternatively, this work proposed a framework to estimate hemodynamics in vessels based on angiography images using machine learning (ML) algorithms. First, the iodine contrast perfusion in blood was mimicked by a flow of dye diffusing into water in the experimentally validated CFD modeling. The generated projective images from simulations imitated the counterpart of light passing through the flow field as an analogy of X-ray imaging. Thus, the CFD simulation provides both the ground truth velocity field and projective images of dye flow patterns. The rough velocity field was estimated using the optical flow method (OFM) based on 53 projective images. ML training with least absolute shrinkage, selection operator and convolutional neural network was conducted with CFD velocity data as the ground truth and OFM velocity estimation as the input. The performance of each model was evaluated based on mean absolute error and mean squared error, where all models achieved or surpassed the criteria of 3 × 10−3 and 5 × 10−7 m/s, respectively, with a standard deviation less than 1 × 10−6 m/s. Finally, the interpretable regression and ML models were validated with over 613 image sets. The validation results showed that the employed ML model significantly reduced the error rate from 53.5% to 2.5% on average for the v-velocity estimation in comparison with CFD. The ML framework provided an alternative pathway to support clinical diagnosis by predicting hemodynamic information with high efficiency and accuracy.

Funder

National Heart, Lung, and Blood Institute

Premier Health and Boonshoft School of Medicine Endowment Funding at Wright State University

Publisher

MDPI AG

Subject

Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3