Bedside Hyperspectral Imaging and Organ Dysfunction Severity in Critically Ill COVID-19 Patients—A Prospective, Monocentric Observational Study

Author:

Kuhlmann Henning1,Garczarek Lena1,Künne David1,Pattberg Kevin1ORCID,Skarabis Annabell1ORCID,Frank Mirjam2,Schmidt Börge2,Arends Sven1,Herbstreit Frank1ORCID,Brenner Thorsten1,Schmidt Karsten1ORCID,Espeter Florian1

Affiliation:

1. Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany

2. Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany

Abstract

Hyperspectral imaging (HSI) is a non-invasive technology that provides information on biochemical tissue properties, including skin oxygenation and perfusion quality. Microcirculatory alterations are associated with organ dysfunction in septic COVID-19 patients. This prospective observational study investigated associations between skin HSI and organ dysfunction severity in critically ill COVID-19 patients. During the first seven days in the ICU, palmar HSI measurements were carried out with the TIVITA® tissue system. We report data from 52 critically ill COVID-19 patients, of whom 40 required extracorporeal membrane oxygenation (ECMO). HSI parameters for superficial tissue oxygenation (StO2) and oxygenation and perfusion quality (NPI) were persistently decreased. Hemoglobin tissue content (THI) increased, and tissue water content (TWI) was persistently elevated. Regression analysis showed strong indications for an association of NPI and weaker indications for associations of StO2, THI, and TWI with sequential organ failure assessment (SOFA) scoring. StO2 and NPI demonstrated negative associations with vasopressor support and lactate levels as well as positive associations with arterial oxygen saturation. These results suggest that skin HSI provides clinically relevant information, opening new perspectives for microcirculatory monitoring in critical care.

Funder

Stiftung Universitätsmedizin Essen

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3